Cuyamaca College Math 280 Name:_____ Instructor: Dan Curtis

Practice Exam 2

6. Find the volume of the solid obtained by rotating the region bounded by the given curves about the y-axis.

 $y = \ln x, y = 1, y = 2, x = 0$

7. Find the volume of the solid generated by rotating the region bounded by the given curves about the y-axis.

$$y = e^{-x^2}$$
, $y = 0$, $x = 0$, $x = 1$

8. a) Find the points on the curve where the tangent line is horizontal or vertical. $r = 1 - \cos(\theta)$

9. Find the area inside one leaf of the curve. $r = \cos(3\theta)$ 10. Find the slope of the tangent line. π

$$r = \cos 3\theta, \qquad \theta = \frac{\pi}{4}$$

11. a) Setup the integral for the arc length of the curve $y = \sin x$ between the points (0, 0) and (π , 0). Use your calculator to evaluate the integral.

b) Setup the integral for the arc length of the parametric curve. Use your calculator to evaluate it.

 $x = e^t \qquad \qquad y = t^3 \qquad \qquad 0 \le t \le 4$

c) Setup the integral for the arc length of the polar curve. Use your calculator to evaluate it. $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$ 12) Find the area inside the region bounded by the parametric curve and the y-axis. $x = t^2 - 4$

 $x = t^2 - 4$ y = 2t + 5

14. Sketch the parametric curve and eliminate the parameter to find the Cartesian equation of the curve.

 $x = \cos t \qquad y = \sec t \qquad 0 \le t \le \pi / 2$

15. Find the points on the curve where the tangent is horizontal.

 $x = 13(\cos t - \cos^2 t) \qquad y = 13(\sin t - \sin t \cos t)$

16. Find an equation of the line tangent to the curve at the point corresponding to the value of the parameter.

 $x = e^t \qquad \qquad y = 9 - 8t^2 \qquad \qquad t = 1$

Solutions: 6. $\frac{\pi e^4}{2} - \frac{\pi e^2}{2}$ 7. $\pi - \frac{\pi}{e}$ 8. Horizontal: $\theta = 2\pi / 3, 4\pi / 3$ Vertical: $\theta = \pi, \pi / 3, 5\pi / 3$ Undefined slope: $\theta = 0$ 9. $\pi / 12$ 10. m=2 11. $a) \int_0^{\pi} \sqrt{1 + \cos^2 x} \, dx = 3.81941$ b) $\int_0^4 \sqrt{(e^t)^2 + (3t^2)^2} \, dt = 84.03$ c) $\int_0^{2\pi} \sqrt{\sin^2 \theta + (1 + \cos \theta)^2} \, d\theta = 8.89$ 12. 64/314. y = 1/x

15.
$$t = 2\pi/3, 4\pi/3$$
, giving the
points $\left(-\frac{39}{4}, -\frac{39\sqrt{3}}{4}\right)$ and
 $\left(-\frac{39}{4}, \frac{39\sqrt{3}}{4}\right)$
16. $y = \frac{-16}{4}(x-e) + 1$